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The problem of steady-state flow of a gas–condensate mixture near an operating well is considered. The effect
of capillary forces on condensate distribution in a porous medium is studied both analytically and numeri-
cally. It is shown that capillary forces can serve to decrease the amount of condensate, with the effect occur-
ring in both cases — wetting and nonwetting liquid phases.

It is well known that the problem of radial steady-state filtration of a gas–condensate mixture is integrated in
quadratures [1–3]. In the case of a zero capillary jump of pressure, a stationary solution can be obtained in the plane
case as well [4]. The properties of exact solutions can be used for interpretation of stationary studies of gas–conden-
sate mixtures [5]. Although the employed method of solution covers the case of nonzero capillary forces [2], the effect
of the latter on the solution and, in particular, on the distribution of condensate saturation in the critical area of the
well has not been studied in detail. Numerical and analytical solutions were obtained only for the case of coinciding
pressures in gas and condensate [1–3]. In the present paper, we give analytical and numerical solutions of the problem
of filtration of a gas–condensate mixture with capillary forces.

It will be recalled that for gas–condensate reservoirs under the formation conditions most of the porous vol-
ume is occupied by the hydrocarbon gas phase and the amount of the hydrocarbon liquid phase is small or equal to
zero. As pressure decreases, formation gas liberates the liquid phase (condensate) due to retrograde condensation [6].
Condensate can be accumulated in a large amount in the critical area of the well, thus sharply decreasing its output.
Therefore, it is of importance to predict the condensate distribution near the well.

We consider a steady-state, isothermal, cylindrically symmetric flow of the gas–condensate mixture in an iso-
tropic collector. In this case, all characteristics of the mixture depend on the distance to the well axis r. The well is
assumed to be vertical. The determining equations are the conditions of condensation of the components:

∂r (r (nigug
r
 + nicuc

r)) = 0 . (1)

Here and below, i and j take values 1, ..., M, thus corresponding to the number of the component. For the rates of
filtration we take the Darcy law

ug
r
 = − kfgµg

−1∂rpg ,   uc
r
 = − kfcµc

−1∂rpc . (2)

We assume that all properties and characteristics of the gas and condensate are determined by expressions
which are the same for both phases [6]. In this case, since flow is isothermal, the temperature dependence will be
omitted. Thus, pg = p(nig), pc = p(nic), µg = µ(nig), µc = µ(nic), κig = κi(njg), and κic = κi(njc).

The relative phase permeabilities of the gas and condensate are functions of the condensate saturation sc: fg =
fg(sc), fc = fc(sc).

The densities of the components in the gas and condensate are related by the conditions of local thermody-
namics equilibrium:

κig = κic , (3)
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pg − pc = pcap . (4)

Here pcap = pcap(sc) is a smooth monotonically decreasing function of the condensate saturation sc. If the condensate
is the wetting phase, then pcap ≥ 0; if it is the nonwetting phase, then pcap ≤ 0.

Equations (1) have M integrals

2πrh (nigug
r
 + nicuc

r)) = − Qi .
(5)

We introduce the notation Q =   ∑ 

i=1

M

Qi ,  ng =   ∑ 

i=1

M

nig ,  nc =   ∑ 

i=1

M

nic ,  cig = nig
 ⁄ ng, cic = nic

 ⁄ nc.  

From Eqs. (5) follows a relation that relates the concentrations in the phases:

(1 − W) cig + Wcic = ci0 , (6)

W = − 2πrhncuc
r ⁄ Q = 1 + 2πrhngug

r  ⁄ Q . (7)

The system of equations (3), (4), and (6) can be interpreted as a description of disintegration of the mixture
with a composition ci0 into gas and condensate with compositions cig and cic and pressures in the phases pg and pc,
respectively. We note that for gas–condensate fields the situation is typical when at a distance from the operating well
condensate is either absent in the formation or its amount is insufficient and the mobility of the condensate can be
neglected. Here, as follows from relations (6), (7), concentrations ci0 describe the gas phase of the formation mixture.
In the general case, concentrations ci0 determine the composition of the moving part of the formation mixture. The
problem of disintegration of a ci0 mixture into gas and condensate is independent of the problem of filtration and can
be solved by the means and methods of chemical thermodynamics, for example, on the basis of the equation of state
chosen for a mixture [6]. With a fixed set of ci0, the solution, generally speaking, has the following functional form:

cig = cig (pg, pc) ,   ng = ng (pg, pc) ,   cic = cic (pg, pc) ,   nc = nc (pg, pc) ,   W = W (pg, pc) . (8)

Instead of the spatial coordinate r, it convenient to introduced the collective variable

ξ = Q (2πkh)−1
 ln (r ⁄ a) . (9)

Then, from Eqs. (2), (7), and (9) the system of ordinary differential equations for pressures in the phases follows:

dpg

dξ
 = 

(1 − W) µg

ngfg
 , (10)

dpc

dξ
 = 

Wµc

ncfc
 . (11)

With account for expressions (8), the right-hand sides of Eqs. (10), (11) are functions of the variables pg, pc,
and sc. The problem of determination of the functions pg(ξ), pc(ξ), and sc(ξ) becomes closed if the finite (nondiffer-
ential) equation (4) is added to Eqs. (10), (11).

In view of the self-similarity of the system of equations (4), (10), and (11), one solution of the problem pg =
pg(ξ), pc = pc(ξ), and sc = sc(ξ) generates a range of other solutions pg = pg(ξ + ξ0), pc = pc(ξ + ξ0), and sc =
sc(ξ + ξ0), where ξ0 is arbitrary. Allowing for determination of the variable ξ in (9), we can draw a conclusion that
one of the solutions found makes it possible to automatically obtain a solution of the initial problem of filtration (1),
(3), (4) at any other value of the parameters Q, k, h, and a.
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The solution of the problem of filtration of a gas–condensate mixture must satisfy ordinary boundary condi-
tions — pressures on the well face pw and in the formation p0 are set:

pg r=rw
 = pw ,   pg r=r0

 = p0 . (12)

The output of the well Q is found from solution of the problem with account for conditions (12).
It is worth noting that, generally speaking, solution of the problem of filtration is not ambiguously determined

by the boundary conditions (12). Indeed, in the general case, the trajectories of the system (10), (11) continuously oc-
cupy the plane pg, pc and, consequently, form a parametric set. Taking any trajectory, from conditions (12) one can
determine values of the parameter ξ which correspond to the radii rw and r0 and then, from Eq. (9), calculate the pa-
rameters Q and a. Thus, an infinite range of solutions of the problem of filtration can be found, and for selection of
a singular solution one must have an additional criterion.

The behavior of solutions greatly depends on the function W = W(pg, pc). The region W > 0 is qualitatively
depicted in Fig. 1 in the plane (pg, pc). This region is bounded by the closed curve OKLMNO. The sections OK and
ON are determined by the lower limit of the considered range of pressures, which is assumed to be much higher than
atmospheric. The curve LM is determined by the equation W(pg, pc) = 0. In the vicinity of this curve, the function W
= W(pg, pc) is determined as smooth. The function W = W(pg, pc) has a discontinuity: on the curves KL and MN, on
one side of the curve the function W = W(pg, pc) takes, generally speaking, finite positive values and on the other side
of the curve it is exactly zero. This structure of the boundary of the region W > 0 is substantiated theoretically in the
Appendix. The point D (see Fig. 1) corresponds to the value of pressure pD at which the gas mixture becomes unsta-
ble in the volume (the dew point).

We now consider the problem of nonuniqueness of the solution in more detail. According to Eq. (11), the
condensate is mobile (fc > 0) only provided that W > 0. Consequently, if there is a nonzero threshold of condensate
mobility sc1 > 0, then for W > 0 the condensate saturation must be higher than this threshold, sc > sc1. At W = 0 the
condensate (if any) is motionless.

By virtue of this, two mechanisms of origination of the ambiguity can be revealed.
I. Let sc = sc(pg) be a value of saturation depending on pressure in the gas phase on the curve LM (see Fig.

1), which is obtained as a result of elimination of the parameter pc from the equations W(pg, pc) = 0 and (4). In other
words, sc = sc(pg) is such a limiting value of condensate saturation at which the mixture with composition ci0 cannot
disintegrate in the porous medium into the gas phase with pressure pg and the liquid phase with saturation within the
range [sc(pg), 1]. Then, at certain values of pressure in the gas medium which are higher than saturation pressure,
pg > pD, the inequality sc(pg) < sc1) can hold. In this case, the moving gas phase with the composition ci0 can coexist
at thermodynamic equilibrium with the motionless liquid phase, with the liquid-phase saturation lying within the range

Fig. 1. Region of two-phase states of the multicomponent mixture with differ-
ent pressures in the phases.

268



[sc(pg), sc1]. Despite the fact that the liquid is motionless, it affects the pressure field, since on the right-hand side of
Eq. (10) the coefficient fg = fg(sc) is present.

The presence or absence of the motionless liquid phase is not in conflict with the main equations of the fil-
tration problem (1), (3), and (4). Therefore, solutions with an arbitrary set of ranges of the radial coordinate r are pos-
sible, in principle, where the motionless liquid phase is present. However, if the flow near the well, which is formed
as a result of gradual decrease of pressure on the well face, is considered and condensate in the formation is initially
absent, the solutions with motionless liquid must be excluded. On the contrary, if motionless condensate initially ex-
isted in the formation, it must remain in the steady-state flow as well.

II. At the point ξ = ξt of transition from the region W = 0 to the region W > 0, a jump of saturation takes
place. As was discussed above, when ξ > ξt the condensate saturation is zero or lies within the range [sc(pg, sc1).
When ξ < ξt, the condensate saturation is strictly higher than sc1 and simultaneously is strictly lower than the value of
sc2, which corresponds to the threshold of mobility for the gas. The value of sc,t = sc ξ=ξt−0 can be selected arbitrarily
within the range sc1 < sc,t < sc2, and this choice unambiguously determines the solution in the region ξ < ξt.

As in case I, if a steady-state flow is formed from the state of the formation system where condensate is ab-
sent, one must choose a solution with a minimum value of the condensate saturation. This corresponds to the boundary
condition

sc,t = sc1 . (13)

Thus, the choice of solution must be based on the pre-history of the formation system as a whole. In what
follows, we consider the solution with a minimum possible amount of condensate. In the region W = 0, condensate is
absent and the pressure field is determined by Eq. (10) with fg = 1. In the region W > 0, the solution of the problem
is determined by the system of equations (4), (10), and (11) with boundary condition (13).

The point of entry into the region W > 0 can be found in the plane (pg, pc) as the intersection of the curves
KL, LM, and MN (see Fig. 1) with the straight line

pg − pc = pcap (sc1) . (14)

Figure 1 presents possible versions of the position of the straight line (14) in the plane (pg, pc): AA′ is the
case where the condensate is the nonwetting phase, BB′ and CC′ are the cases where the condensate is the wetting
phase, and OO′ is the case where the capillary jump is zero. For the version BB′, condensate appears at a pressure in
the gas pg exceeding the saturation pressure pD for the versions AA′ and CC′, i.e., pg < pD.

It is pertinent to emphasize that condition (14) for the point of mixture entry into the region W > 0, where two
mobile phases with different pressures coexist, takes place at the least possible amount of condensate behind the jump
(13). Due to the nonuniqueness of the solution, jumps with a larger amount of condensate are possible.

In order to estimate the possible effect of capillary forces on a gas–condensate mixture flow, we obtained a
series of numerical solutions of the problem (4), (10), and (11) for a mixture composition corresponding to the second
object of the Karachaganak oil-gas-condensate field (Republic of Kazakhstan). The mixture composition (in mole frac-
tions) is as follows: cN2

 = 0.0103, cCO2
 = 0.0462, cH2S = 0.0432, cCH4

 = 0.6269, cC2H6
 = 0.0822, cC3H8

 = 0.0308,
cnC4H10

 = 0.0062, ciC4H10
 = 0.0103, cC5

 = 0.0285, cC6
 = 0.0149, and cC7+ = 0.1005.

The initial formation pressure of 540 bars is close to the saturation pressure of 530 bars (1 bar = 105 Pa).
Thermodynamic characteristics and phase transitions were calculated by the Peng–Robinson equation of state [6]. The
viscosities of the gas and condensate are taken to be constant: µg = 2.3⋅10−5 Pa⋅sec and µc = 4.9⋅10−4 Pa⋅sec, and a
value of ξ = 0 to be correspondent to a gas pressure of 535 bars. The exponential permeabilities to phase were used:

fg = (sg − sg1)
a ⁄ (1 − sg1)

a
 ,   fc = (sc − sc1)

b ⁄ (1 − sc1)
b
 ,

a = b = 2 ,   sg1 = 1 − sc2 = 0.08 ,   sc1 = 0.12 .

Calculations were made for the following model expressions of the capillary pressure:
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pcap (sc) = 
Csc1

sc (1 − sc1)
 − 

Csc1

1 − sc1
 ≥ 0   (C > 0)    (wetting) ,

pcap (sc) = 
Csg1

(1 − sc) sc2
 − 

Csg1

sc2
 ≤ 0   (C < 0)    (nonwetting) .

In solution of Eq. (11), at the point of entry into the two-phase region an eliminable singularity of the 0/0
type can be encountered on the right-hand side. Indeed, it is convenient, using relation (4), to introduce a new un-
known quantity ϕ, which monotonically depends on the condensate saturation when sc > cc1, instead of unknown pres-
sure in the condensate pc:

ϕ = ϕ (sc) =  ∫ 
sc1

sc

 pcap
′  (z) fc (z) dz . (15)

Then, making the substitution of variables in (11) using (15), we obtain an equation which does not involve singulari-
ties:

dϕ
dξ

 = 
(1 − W) µgfc

ngfg
 − 

Wµc

nc
 . (16)

By virtue of the monotonicity of function (15), we can exclude the dependence of the right-hand sides of Eqs.
(10), (16) on the condensate saturation sc and pressure in the condensate pc and express them as functions of pg and
ϕ. Then the system (10), (16) can be solved numerically by the Runge–Kutta method.

Figure 2 gives the values of gas pressure pg at the point of condensate occurrence as a function of capillary
pressure at this point pcap. Figure 3 presents the results of the calculation of pressure and saturation correspondingly
for different values of the parameter C. The quantities which have dimensions of pressure, the parameter C included,
are measured in bars. The output of the well Q is recalculated in units adopted in practice in the development of gas-
condensate fields, viz., ths. m3/day for normal conditions, the coefficient of permeability k is given in millidarcies (1
mD = 10−15 m2), and the formation thickness h is given in meters.

Analysis of the graphs obtained shows that a larger absolute value of the capillary jump facilitates smaller
values of the parameter ξ at the point of occurrence of condensate. This indicates a decrease of the condensate plug
at a fixed output, thickness, and permeability. Simultaneously, the pressure in the gas phase, which corresponds to the
point of condensate occurrence, can decrease (see Fig. 2). The region of capillary jumps, where the gas pressure at the
point of condensate precipitation is higher than the pressure of saturation in the volume (section DM in Fig. 1), turns
out to be very small. Although the size of the condensate plug can strongly differ for various solutions, qualitatively

Fig. 2. Dependence of pressure in the gas on the capillary jump on the bound-
ary of the two-phase region. pg, pcap, bar.
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the distribution of condensate in the critical zone of the well appears to be the same: the condensate saturation in-
creases sharply behind the jump, thus reaching a value of 0.5–0.7 (see Fig. 3b). In the condensate-plug region, the
slope of the pressure curve as a function of the parameter ξ changes, with the slope of the curves being almost the
same for various solutions.

Thus, the problem of gas–condensate mixture flow near the well is reduced to the system of two ordinary dif-
ferential equations for pressures in the phases. The problem of phase transition is aptly separated from the problem of
filtration. Numerical solutions which demonstrate a strong effect of capillary forces on the distribution of condensate
in the critical zone of the well are found for a real mixture of the formation. Here it is found that in cases of both
wetting and nonwetting a large absolute value of the capillary jump can lead to a decrease in the amount of precipi-
tated condensate.

The work was carried out with financial support from the international oil and gas company Schlumberger
Oilfield Services (project code RPO-1234).

APPENDIX

Below we present the derivation of differential relations which satisfy the functions cig = cig(pg, pc), cic =
cic(pg, pc), and W = W(pg, pc) (see (8)) and substantiation of the shape of the boundary of the region W (pg, pc) > 0.
Summation is made by repetitive indices.

It is convenient to use the thermodynamic potential (Gibbs energy) of the mixture ψ = ψ(p, ci) = ciκi. Since

the concentrations satisfy the normalization condition ∑ 

i=1

M

ci = 1, the function ψ actually depends on the concentra-

tions c1, ..., cM−1. We use the Greek subscripts α, β = 1, ..., (M − 1), which correspond to this abridged set of con-

centrations. We also introduce the notation for the partial derivatives: ψ,α = ∂ψ ⁄ ∂cα, ψ,p = ∂ψ ⁄ ∂p.

We recall the well-known relations which satisfy the thermodynamic potential [6]:

ψ,α = κα − κM ,   ψ,p = n
−1

 . (A1)

With account for (A1) the conditions of phase equilibrium (3) take on the following form:

ψ,αg = ψ,αc , (A2)

ψg − cαgψ,αg = ψc − cαcψ,αc . (A3)

Differentiation of (2M − 1) independent equalities (6), (A2), and (A3) leads to (2M − 1) linear equations which
relate (2M + 1) differentials of concentrations dcαg and dcαc, pressures dpg and dpc, and mole fraction of condensate

Fig. 3. Pressure in the gas (a) and saturation of the condensate (b) for gas–con-
densate mixture flows with different capillary forces: 1) C = 0.017; 2) C =
−0.1; 3) C = −0.05; 4) C = 0.014. pg, bars; ξ, ths. m3/(day⋅mD⋅m).
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dW. From these equations we can express the differentials dcαg, dcαc, and dW as linear functions of the differentials
dpg and dpc.

To present these expressions in a compact form it is convenient to pass over to the abridged matrix descrip-
tion of the quantities which depend on the Greek indices. So, for the vectors η = (ηα) and η′ = (ηα′ ) we determine
the product by the formula (η, η′) = ηαηα′ . Moreover, we introduce the notation

cg = (cαg) ,   cc = (cαc) ,

Ag = (Aαβg) = (ψ,αβg) ,   Bg = (Bαg) = (ng
−2

n,αg) ,

Ac = (Aαβc) = (ψ,αβc) ,   Bc = (Bαc) = (nc
−2

n,αc) ,

bg = ng
−1

 + (Bg, cg) ,   bc = nc
−1

 + (Bc, cc) ,

Γg = WAg ,   Γc = (1 − W) Ac .

(A4)

We note that both phases — gas and condensate — are assumed to be locally thermodynamically stable;
therefore, the matrices Ag and Ac are positive.

Differentiation of relations (6), (A2), (A3) yields the following equations:

Wdcc + (1 − W) dcg + (cc − cg) dW = 0 ,

Agdcg − Bgdpg = Acdcc − Bcdpc ,

(cg, Agdcg) − bgdpg = (cc, Acdcc) − bcdpc .

(A5)

Eliminating the differentials of concentrations from these equations, we obtain an expression for the differential of the
mole fraction of the condensate:

dW = ω0
−1

 (ωgdpg − ωcdpc) , (A6)

ω = 
(cg − cc, (Γg − Γg (Γg + Γc)

−1
 Γg) (cg − cc))

W (1 − W)
 ,

ωg = bg − (Γgcg + Γccc, (Γg + Γc)
−1

 Bg) ,   ωc = bc − (Γgcg + Γccc, (Γg + Γc)
−1

 Bc) ,

ω0 = 
(cg − cc, (Γg − Γg (Γg + Γc)

−1Γg) (cg − cc))
W (1 −W)

 .

The expressions for the differentials of concentrations are obtained similarly:

dcg = (Γg + Γc)
−1

 ((WBg + ω0
−1ωgAc (cc − cg)) dpg − (WBc + ω0

−1ωcAc (cc − cg)) dpc) , (A7)

dcc = (Γg + Γc)
−1

 (((W − 1) Bg + ω0
−1ωgAg (cc − cg)) dpg −

− ((W − 1) Bc + ω0
−1ωcAg (cc − cg)) dpc) . (A8)
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Relations (A6)–(A8) can be used in numerical algorithms for determining the functions cig = cig(pg, pc), cic =
cic(pg, pc), and W = W(pg, pc) by the method of small pressure increments in the phases.

Of special interest is the behavior of the differential dW at the points where W = 0. For this case, from for-
mula (A6) we obtain the expression

∂W

∂pc
 = − nc

−1
 ((cc − cg),  Ag (cc − cg))

−1
 < 0 . (A9)

Due to the continuity, inequality (A9) holds in a certain vicinity of the curve W = 0. Thus, in the case of a
small mole fraction of condensate, a decrease of pressure in it causes an increase of the amount of condensate (capil-
lary condensation).

Inequality (A9) substantiates the position of the curve LM in the plane (pg, pc). At the same time, this in-
equality was obtained under the assumption that W = W(pg, pc) is a smooth function of pressure pg, pc. However, we
can show that the function W = W(pg, pc) cannot be determined as a smooth function for all values of pg and pc.

Indeed, let the pressure in the condensate pc be fixed. The equality follows from (A2) and (A3):

ψg = ψc + (cαg − cαc) ψ,αc . (A10)

The right-hand side of (A10) at a fixed pressure and all kinds of concentration is limited from above:

ψc + (cαg − cαc) ψ,αc ≤ σ1 . (A11)

The left-hand side of (A10) at pg = pc and all kinds of concentration is limited from below:

σ2 ≤ ψg . (A12)

Then we use the second relation of (A1) and the property of the Peng–Robinson equation [6] that for
pg ≥ pc and all kinds of concentration the mole density of gas is limited from above, ng ≤ n∗ . Then, when pg ≥ pc, the
estimate follows from inequality (A11):

σ2 + n∗
−1

 (pg − pc) ≤ ψg . (A13)

Hence the thermodynamic limitation to a value of the capillary jump follows:

(pg − pc) ≤ n∗  (ψg − σ2) . (A14)

If condition (A14) is violated, Eqs. (A2) and (A3) cannot hold. Thus, with an increase of pressure in the gas
and at a fixed pressure in the condensate a certain limit is reached when the problem of mixture decomposition into
two phases with different pressures ceases to exist.

This justifies the existence and position of the curve MN. The curve KL is substantiated similarly.

NOTATION

C, maximum value of the jump of capillary pressure; cig and cic, concentrations of the ith component in the
gas and condensate; ci0, concentration of the ith component in the mixture; fg and fc, relative permeabilities to phase
of the gas and condensate; h, thickness of the formation; k, coefficient of absolute permeability; M, number of mixture
components; n, molar density of the mixture; ng and nc, total molar densities of the gas and condensate; nig and nic,
molar density of the ith component in the gas and condensate; p0, pressure in the formation; pcap, capillary pressure
jump; pD, pressure in the gas corresponding to the dew point; pg and pc, pressure in the gas and condensate; pw, pres-
sure on the well face; Q, total flow of components of the mixture; Qi, total flow of the ith component of the gas–con-
densate mixture; r, radial coordinate; r0, radius of the external boundary of the reservoir; rw, well radius; sc,
condensate saturation; sc1, threshold of condensate mobility; sc2, threshold of gas mobility; sc,t, saturation after the
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jump; ug
r  and uc

r, radial velocity of filtration of the gas and condensate phases; W, mole fraction of condensate in the
mixture; κi, chemical potential of the ith component of the mixture; κig and κic, chemical potentials of the ith compo-
nent in the gas and condensate; µg and µc, shear viscosities of the gas and condensate; ξ, collective variable of inte-
gration of equations; ξ0, auxiliary variable; ξt, point of saturation jump; ϕ, auxiliary function; ψ, thermodynamic
potential (Gibbs energy); ψg and ψc, thermodynamic potentials of the gas and liquid phases; a, auxiliary parameter; z,
auxiliary variable of integration; η, η′, cg, Bg, and Bc, auxiliary vectors; Ag, Ac, Γg, and Γc, auxiliary matrices; bg,
bc, ω, ω0, ωc, ωg, σ1, σ2, and n∗ , auxiliary quantities. Indices: g, gas; c, condensate; cap, capillary; w, well; 0, quan-
tity in the formation; t, jump of saturation; 1, 2, thresholds of saturation; i, concentration of the ith component; r, ra-
dial.
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